Partition Properties for Non-Ordinal Sets Under the Axiom of Determinacy

Jared Holshouser

University of North Texas

2017 Joint Math Meetings

Jared Holshouser

University of North Texas

The Simplest Combinatorics

- The Pigeonhole Principle: If m < n ∈ N and f : n → m is a partition of n into m-pieces, then for some i < m, f⁻¹(i) is bigger than 1. (Dirichlet 1834, "Schubfachprinzip")
- Ramsey's theorem: Fix m, k, l ∈ N. Then there is an n ∈ N so that whenever f : [n]^k → m is a partition of the increasing k-tuples from n into m-pieces, then there is an A ⊆ n so that A has size l and f is constant on [A]^k. (Ramsey, 1930)

Partition Properties for Non-Ordinal Sets Under the Axiom of Determinacy

The Coloring Picture

Frequently, partition functions that show up in applications of the Pigeonhole are referred to as colorings.

The Coloring Picture

Frequently, partition functions that show up in applications of the Pigeonhole are referred to as colorings.

Jared Holshouser

University of North Texas

A Bigger Canvas

Jared Holshouser

University of North Texas

A More Diverse Palette

Jared Holshouser

University of North Texas

More Complicated Combinatorics

Definition

For any set A, $[A]^n = \{s \subseteq A : |s| = n\}$ and $[A]^{<\omega} = \bigcup_{n \in \omega} [A]^n$.

Definition

Let A and B be infinite sets.

- (A, B) has the **Ramsey** property iff for any $f : [A]^{\leq \omega} \to B$, there is an $X \subseteq A$ so that |X| = |A| and f is constant on each $[X]^n$.
- (A, B) has the Rowbottom property iff for any f : [A]^{<ω} → B, there is an X ⊆ A so that |X| = |A| and f[[X]^{<ω}] is countable.
- (A, B) has the strong Jónsson property iff for any f : [A]^{<ω} → B, there is an X ⊆ A so that |X| = |A| and

$$|B-f[[X]^{<\omega}]|=|B|.$$

Jared Holshouser

Partition Properties for Non-Ordinal Sets Under the Axiom of Determinacy

Obstructions Under the Axiom of Choice

If all possible colorings are considered, including those only constructable with the axiom of choice, then the existence of a non-trivial pair with any of these three properties is outside of the scope of classical mathematics (They are equiconsistent and between the existence of a measurable cardinal and $0^{\#}$).

The colorings responsible for denying these properties are kind of like non-measurable sets. To further explore the question of the existence of these pairs, we can restrict our attention to definable functions.

Formally, we take definable to mean the coloring is a function in $L(\mathbb{R})$, where the axiom of determinacy (AD) is true.

Jared Holshouser

Definable Functions and Size

A consequence of only using definable functions and measuring the size of sets with injections is that the cardinality structure is fundamentally altered.

Jared Holshouser

University of North Texas

The Original Inspiration

Recall that Θ is the least cardinal that \mathbb{R} does not surject onto.

In 2015, S. Jackson, R. Ketchersid, F. Schlutzenberg, and W.H. Woodin proved the following:

Theorem

Assume AD and $V = L(\mathbb{R})$. Let $\lambda < \kappa < \Theta$ be uncountable cardinals. Then

- 1. If $cf(\kappa) = \omega$ or κ is regular, then (κ, λ) has the Rowbottom property.
- 2. (κ, λ) has the strong Jónsson property.

Additionally, it is an easy corollary of work of J. Steel that in $L(\mathbb{R})$, if $\kappa < \Theta$ is a regular cardinal, then $(\kappa, 2)$ has the Ramsey property.

Jared Holshouser

Partition Properties for Non-Ordinal Sets Under the Axiom of Determinacy

Non-Ordinal Infinite Sets

In the definable context, the most obvious example is \mathbb{R} . Quotients, unions, and products can be used to produce other examples. The examples we understand best are sets formed from finite unions and products of uncountable cardinals (below Θ), \mathbb{R} , and \mathbb{R}/\mathbb{Q} . Denote the collection of all sets constructed in this manner by $\mathcal{X}.$

My results for these are as follows (Assuming AD and $V = L(\mathbb{R})$):

- (A, B) has the strong Jónsson property for all $A, B \in \mathcal{X}$,
- ($\mathbb{R}/\mathbb{Q},\mathbb{R}$) has the Ramsey property, and
- if κ is a cardinal, then (ℝ, κ) has the Rowbottom property and (ℝ/Q, κ) has the Ramsey property.

Jared Holshouser

Future Work: Infinite Unions

The following is a preliminary report:

- if A ∈ X and B is a well-ordered unions of smooth quotients of ℝ, then (A, B) is Jónsson, and
- if A is a well-ordered unions of smooth quotients of ℝ, then there is an α so that 2^ω → A → 2^α. Even with ω₁-length unions, A could be ω₁ ∪ ℝ, ω₁ × ℝ, ℝ, or maybe something else altogether.

Partition Properties for Non-Ordinal Sets Under the Axiom of Determinacy

Thanks For Listening!

Jared Holshouser

University of North Texas